## Stoichiometry Worksheet

1. Silver sulfide $\left(\mathrm{Ag}_{2} \mathrm{~S}\right)$ is the common tarnish on silver objects. What weight of silver sulfide can be made from 1.23 mg of hydrogen sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ obtained from a rotten egg? The reaction of formation of silver sulfide is given below:
$\mathrm{Ag}(\mathrm{s})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})($ Equation must first be balanced.)
2. A somewhat antiquated method for preparing chlorine gas involves heating hydrochloric acid with pyrolusite (manganese dioxide), a common manganese ore. (Reaction given below.) How many kg of HCl react with 5.69 kg of manganese dioxide?
$\mathrm{HCl}(\mathrm{aq})+\mathrm{MnO}_{2}(\mathrm{~s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{MnCl}_{2}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g})$ (Equation must first be balanced.)
3. Given the following equation: $2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2}--->8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$, show what the following molar ratios should be.
a. $\mathrm{C}_{4} \mathrm{H}_{10} / \mathrm{O}_{2}$ b. $\mathrm{O}_{2} / \mathrm{CO}_{2}$ c. $\mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}$
d. $\mathrm{C}_{4} \mathrm{H}_{10} / \mathrm{CO}_{2}$ e. $\mathrm{C}_{4} \mathrm{H}_{10} / \mathrm{H}_{2} \mathrm{O}$
4. Given the following equation: $2 \mathrm{KClO}_{3}--->2 \mathrm{KCl}+3 \mathrm{O}_{2}$

How many moles of $\mathrm{O}_{2}$ can be produced by letting 12.00 moles of $\mathrm{KClO}_{3}$ react?
5. Given the following equation: $2 \mathrm{~K}+\mathrm{Cl}_{2} \ldots-->2 \mathrm{KCl}$

How many grams of KCl is produced from 2.50 g of K and excess $\mathrm{Cl}_{2}$. From 1.00 g of $\mathrm{Cl}_{2}$ and excess K ?
6. Given the following equation: $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}--->2 \mathrm{NaOH}$

How many grams of NaOH is produced from $1.20 \times 10^{2}$ grams of $\mathrm{Na}_{2} \mathrm{O}$ ? How many grams of $\mathrm{Na}_{2} \mathrm{O}$ are required to produce $1.60 \times 10^{2}$ grams of NaOH ?
7. Given the following equation: $8 \mathrm{Fe}+\mathrm{S}_{8}--->8 \mathrm{FeS}$

What mass of iron is needed to react with 16.0 grams of sulfur? How many grams of FeS are produced?
8. Given the following equation: $2 \mathrm{NaClO}_{3}--->2 \mathrm{NaCl}+3 \mathrm{O}_{2}$
12.00 moles of $\mathrm{NaClO}_{3}$ will produce how many grams of $\mathrm{O}_{2}$ ? How many grams of NaCl are produced when 80.0 grams of $\mathrm{O}_{2}$ are produced?
9. Given the following equation: $\mathrm{Cu}+2 \mathrm{AgNO}_{3}--->\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$

How many moles of Cu are needed to react with 3.50 moles of $\mathrm{AgNO}_{3}$ ? If 89.5 grams of Ag were produced, how many grams of Cu reacted?
10. Molten iron and carbon monoxide are produced in a blast furnace by the reaction of iron(III) oxide and coke (pure carbon). If 25.0 kilograms of pure $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is used, how many kilograms of iron can be produced? The reaction is: $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C}--->2 \mathrm{Fe}+$ 3 CO
11. The average human requires 120.0 grams of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ per day. How many grams of $\mathrm{CO}_{2}$ (in the photosynthesis reaction) are required for this amount of glucose? The photosynthetic reaction is:
$6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}--->\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$
12. Given the reaction: $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})--->4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}$ (l)

When 1.20 mole of ammonia reacts, the total number of moles of products formed is:

## Answers to Stoichiometry Worksheet

1. Silver sulfide $\left(\mathrm{Ag}_{2} \mathrm{~S}\right)$ is the common tarnish on silver objects. What mass of silver sulfide can be made from 1.23 mg of hydrogen sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ obtained from a rotten egg? The reaction of formation of silver sulfide is given below:
$4 \mathrm{Ag}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

$$
\mathrm{m}=1.23 \quad \mathrm{~m}=? ? ?
$$

mg

| $\mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}}=\frac{\mathrm{m}}{\mathrm{M}}=\frac{0.00123 \mathrm{~g}}{34.08 \mathrm{~g} / \mathrm{mol}}=3.61 \times 10^{-5} \mathrm{~mol}$ | $\mathrm{M}_{\mathrm{H}_{2} \mathrm{~S}}$ <br> $2 \mathrm{H}=2.02 \mathrm{~g} / \mathrm{mol}$ <br> $1 \mathrm{~S}=32.06 \mathrm{~g} / \mathrm{mol}$ <br> $34.06 \mathrm{~g} / \mathrm{mol}$ |
| :--- | :--- |

$$
\mathrm{n}_{\mathrm{Ag}_{2} \mathrm{~S}}=\mathrm{n}_{\mathrm{H}_{2} \mathrm{~S}} \text { (Since 2:2 mole ratio) }=3.61 \times 10^{-5} \mathrm{~mol}
$$

$$
\mathrm{m}_{\mathrm{Ag}_{2} \mathrm{~S}}=\mathrm{nM}=\left(3.61 \times 10^{-5} \mathrm{~mol}\right)(247.80 \mathrm{~g} / \mathrm{ml})=0.00895 \mathrm{~g} \left\lvert\, \begin{aligned}
& \frac{\mathrm{M}_{\mathrm{Ag}_{2} \mathrm{~S}}}{2 \mathrm{Ag}=215.74 \mathrm{~g} / \mathrm{mol}} \\
& \frac{1 \mathrm{~S}=32.06 \mathrm{~g} / \mathrm{mol}}{247.80 \mathrm{~g} / \mathrm{mol}}
\end{aligned}\right.
$$

2. A somewhat antiquated method for preparing chlorine gas involves heating hydrochloric acid with pyrolusite (manganese dioxide), a common manganese ore. (Reaction given below.) How many kg of HCl react with 5.69 kg of manganese dioxide?

$$
\begin{array}{ll}
4 \mathrm{HCl}(\mathrm{aq}) & +\mathrm{MnO}_{2}(\mathrm{~s}) \\
\mathrm{m}(\mathrm{~kg})=? & \rightarrow \underset{\mathrm{H}_{2} \mathrm{O}(\mathrm{l})}{2}+\underset{(\mathrm{aq})}{\mathrm{MnCl}_{2}}+\mathrm{Cl}_{2}(\mathrm{~g}) \\
& \begin{array}{l}
\mathrm{m}=5.69 \\
\mathrm{~kg}
\end{array}
\end{array}
$$

Note that since you are asked for the mass in kg and given the mass in kg , then you don't need to convert to grams. Just keep the " k " and cancel out everything you can, and the answer will turn out in kg .

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{MnO}_{2}}=\frac{\mathrm{m}}{\mathrm{M}}=\frac{5.69 \mathrm{~kg}}{86.94 \mathrm{~g} / \mathrm{mol}}=0.0654 \mathrm{kmol} \\
& \text { (Note only the " } \mathrm{g} \text { " } \mathrm{s} \text { cancel; left with } \mathrm{kmol} \text { ) } \\
& \mathrm{M}_{\mathrm{MnO}_{2}} \\
& 1 \mathrm{Mn}=54.94 \mathrm{~g} / \mathrm{mol} \\
& \frac{2 \mathrm{O}=32.00 \mathrm{~g} / \mathrm{mol}}{86.94 \mathrm{~g} / \mathrm{mol}} \\
& \mathrm{n}_{\mathrm{HCl}}=\mathrm{n}_{\mathrm{MnO}_{2}} \times 4=0.0654 \mathrm{kmol} \times 4=0.2616 \mathrm{kmol} \\
& \mathrm{~m}_{\mathrm{HCl}}=\mathrm{nM}=0.2616 \mathrm{kmol} \times 36.46 \mathrm{~g} / \mathrm{mol}=9.538 \mathrm{~kg} \\
& \text { (Note only the " mol" cancels; left with " } \mathrm{kg} \text { ") }
\end{aligned}
$$

3. Given the following equation: $2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2}-->8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$, show what the following molar ratios should be.
a. $\mathrm{C}_{4} \mathrm{H}_{10} / \mathrm{O}_{2}$ b. $\mathrm{O}_{2} / \mathrm{CO}_{2}$ c. $\mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}$ d. $\mathrm{C}_{4} \mathrm{H}_{10} / \mathrm{CO}_{2}$ e. $\mathrm{C}_{4} \mathrm{H}_{10} / \mathrm{H}_{2} \mathrm{O}$
a. 2/13 b.13/8 c. 13.10 d.2/8 e.2/10
4. Given the following equation: $2 \mathrm{KClO}_{3} \cdots \mathbf{~ K C l}+3 \mathrm{O}_{2}$

How many moles of $\mathrm{O}_{2}$ can be produced by letting $\mathbf{1 2 . 0 0}$ moles of $\mathrm{KClO}_{3}$ react?
$2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow \underset{\mathrm{KCl}(\mathrm{s})}{2}+3 \mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{n}=\mathbf{1 2 . 0 0}$

$$
\mathrm{n}=? ? ?
$$

mol

$$
\mathrm{n}_{\mathrm{O}_{2}}=\mathrm{n}_{\mathrm{KClO}_{3}} \times \frac{2}{3}=12.00 \mathrm{~mol} \times \frac{2}{3}=18.00 \mathrm{~mol}
$$

5.Given the following equation: $2 \mathrm{~K}+\mathrm{Cl}_{2} \boldsymbol{- - >} \mathbf{2} \mathrm{KCl}$

How many grams of KCl is produced from 2.50 g of K and excess $\mathrm{Cl}_{2}$.?
$2 \mathrm{~K} \quad+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{KCl}$
$\mathrm{m}=2.50$

$$
\mathrm{m}=? ? ?
$$

g

$$
\begin{array}{l|l}
\mathrm{n}_{\mathrm{K}}=\frac{\mathrm{m}}{\mathrm{M}}=\frac{2.50 \mathrm{~g}}{39.10 \mathrm{~g} / \mathrm{mol}}=0.0639 \mathrm{~mol} & \frac{\mathrm{M}_{\mathrm{KCl}}}{1 \mathrm{~K}=39.10 \mathrm{~g} / \mathrm{mol}} \\
\mathrm{n}_{\mathrm{KCl}}=\mathrm{n}_{\mathrm{K}}=0.0639 \mathrm{~mol} & 1 \mathrm{Cl}=35.45 \mathrm{~g} / \mathrm{mol} \\
\mathrm{~m}_{\mathrm{KCl}}=\mathrm{nM}=0.0639 \mathrm{~mol} \times 74.55 \mathrm{~g} / \mathrm{mol}=4.77 \mathrm{~g} & 74.55 \mathrm{~g} / \mathrm{mol}
\end{array}
$$

From 1.00 g of $\mathrm{Cl}_{2}$ and excess K ?

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{Cl}_{2}}=\frac{\mathrm{m}}{\mathrm{M}}=\frac{1.00 \mathrm{~g}}{70.90 \mathrm{~g} / \mathrm{mol}}=0.0141 \mathrm{~mol} \\
& \mathrm{n}_{\mathrm{KCl}}=\mathrm{n}_{\mathrm{Cl}_{2}} \times 2=0.0282 \mathrm{~mol} \\
& \mathrm{~m}_{\mathrm{KCl}}=\mathrm{nM}=0.0282 \mathrm{~mol} \times 74.55 \mathrm{~g} / \mathrm{mol}=21.0 \mathrm{~g}
\end{aligned}
$$

6. Given the following equation: $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}-->2 \mathrm{NaOH}$

How many grams of NaOH is produced from $1.20 \times 10^{\mathbf{2}}$ grams of $\mathrm{Na}_{2} \mathrm{O}$ ?

$$
\begin{array}{lll}
\mathrm{Na}_{2} \mathrm{O} & +\mathrm{H}_{2} \mathrm{O} \rightarrow & \rightarrow \mathrm{NaOH} \\
\mathrm{~m}=1.20 \times 10^{2} & & \\
\mathrm{~m}=? ? ?
\end{array}
$$

| $\mathrm{n}_{\mathrm{Na}_{2} \mathrm{O}}=\frac{\mathrm{m}}{\mathrm{M}}=\frac{1.20 \times 10^{2} \mathrm{~g}}{61.98 \mathrm{~g} / \mathrm{mol}}=1.94 \mathrm{~mol}$ | $\frac{\mathrm{M}_{\mathrm{Na}_{2} \mathrm{O}}}{2 \mathrm{Na}=45.98 \mathrm{~g} / \mathrm{mol}}$ | $\frac{\mathrm{M}_{\mathrm{NaOH}}}{1 \mathrm{Na}=22.99 \mathrm{~g} / \mathrm{mol}}$ |
| :--- | :--- | :--- |
| $\mathrm{n}_{\mathrm{NaOH}}=\mathrm{n}_{\mathrm{Na}_{2} \mathrm{O}} \times 2=3.87 \mathrm{~mol}$ | $10=16.00 \mathrm{~g} / \mathrm{mol}$ | $1 \mathrm{O}=16.00 \mathrm{~g} / \mathrm{mol}$ |
| $\mathrm{m}_{\mathrm{NaOH}}=\mathrm{nM}=3.87 \mathrm{~mol} \times 40.00 \mathrm{~g} / \mathrm{mol}=155 \mathrm{~g}$ | $\frac{1 \mathrm{H}=1.01 \mathrm{~g} / \mathrm{mol}}{61.9806 \mathrm{~g} / \mathrm{mol}}$ | $\frac{10.00 \mathrm{~g} / \mathrm{mol}}{40 .}$ |

How many grams of $\mathrm{Na}_{2} \mathrm{O}$ are required to produce $1.60 \times 10^{2}$ grams of NaOH ?

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{NaOH}}=\frac{\mathrm{m}}{\mathrm{M}}=\frac{1.60 \times 10^{2} \mathrm{~g}}{40.00 \mathrm{~g} / \mathrm{mol}}=4.00 \mathrm{~mol} \\
& \mathrm{n}_{\mathrm{Na}_{2} \mathrm{O}}=\mathrm{n}_{\mathrm{NaOH}} \times \frac{1}{2}=2.00 \mathrm{~mol} \\
& \mathrm{~m}_{\mathrm{Na}_{2} \mathrm{O}}=\mathrm{nM}=2.00 \mathrm{~mol} \times 61.98 \mathrm{~g} / \mathrm{mol}=124 \mathrm{~g}
\end{aligned}
$$

7. Given the following equation: $8 \mathrm{Fe}+\mathrm{S}_{8}-->8 \mathrm{FeS}$

What mass of iron is needed to react with $\mathbf{1 6 . 0}$ grams of sulfur?
$8 \mathrm{Fe} \quad+\quad \mathrm{S}_{8} \quad \rightarrow \quad 8 \mathrm{FeS}$
$\mathrm{m}=? ? ? \quad \mathrm{~m}=16.00 \mathrm{~g}$

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{S}_{8}}=\frac{\mathrm{m}}{\mathrm{M}}=\frac{16.00 \mathrm{~g}}{256.48 \mathrm{~g} / \mathrm{mol}}=0.0624 \mathrm{~mol} \\
& \mathrm{n}_{\mathrm{Fe}_{\mathrm{e}}}=\mathrm{n}_{\mathrm{S}_{8}} \times 8=0.0624 \mathrm{~mol} \times 8=0.500 \mathrm{~mol} \\
& \mathrm{~m}_{\mathrm{Fe}}=\mathrm{nM}=0.500 \mathrm{~mol} \times 55.85 \mathrm{~g} / \mathrm{mol}=27.9 \mathrm{~g}
\end{aligned}
$$

## How many grams of FeS are produced?

$8 \mathrm{Fe} \quad+\quad \mathrm{S}_{8} \quad \rightarrow \quad 8 \mathrm{FeS}$
$\mathrm{n}=$

$$
\mathrm{m}=? ? ?
$$

0.500 mol

| $\mathrm{n}_{\mathrm{Fe}}=0.500 \mathrm{~mol}$ (from previous calculation) | $\frac{\mathrm{M}_{\mathrm{FeS}}}{1 \mathrm{Fe}=55.85 \mathrm{~g} / \mathrm{mol}}$ |
| :--- | :--- |
| $\mathrm{n}_{\mathrm{FeS}}=\mathrm{n}_{\mathrm{Fe}}=0.500 \mathrm{~mol}$ | $\frac{1 \mathrm{~S}=32.06 \mathrm{~g} / \mathrm{mol}}{87.91 \mathrm{~g} / \mathrm{mol}}$ |
| $\mathrm{m}_{\mathrm{FeS}}=\mathrm{nM}=0.500 \mathrm{~mol} \times 87.91 \mathrm{~g} / \mathrm{mol}=43.9 \mathrm{~g}$ |  |

8. Given the following equation: $2 \mathrm{NaClO}_{3} \ldots-->2 \mathrm{NaCl}+3 \mathrm{O}_{2}$
12.00 moles of $\mathrm{NaClO}_{3}$ will produce how many grams of $\mathrm{O}_{2}$ ?
$2 \mathbf{N a C l O}_{3} \rightarrow \quad 2 \mathrm{NaCl}+3 \mathbf{O}_{2}$
$\mathrm{n}=$

$$
\mathrm{m}=? ? ?
$$

12.00 mol

$$
\begin{aligned}
\mathrm{n}_{\mathrm{O}_{2}} & =\mathrm{n}_{\mathrm{NaClO}} \times \frac{3}{2}=18.00 \mathrm{~mol} \\
\mathrm{~m}_{\mathrm{O}_{2}} & =\mathrm{nM}=18.00 \mathrm{~mol} \times 32.00 \mathrm{~g} / \mathrm{mol}=576.0 \mathrm{~g}
\end{aligned}
$$

How many grams of NaCl are produced when 80.0 grams of $\mathrm{O}_{2}$ are produced?

| $2 \mathrm{NaClO}_{3} \rightarrow \quad 2 \mathrm{NaCl}$ | $+\quad \mathbf{3 O}_{2}$ |  |
| ---: | :--- | :--- | :--- |
|  | $\mathrm{~m}=? ? ?$ |  |
|  |  | $\mathrm{~m}=$ |
|  |  | 80.0 g |


| $\mathrm{n}_{\mathrm{O}_{2}}=\frac{\mathrm{m}}{\mathrm{M}}=\frac{80.0 \mathrm{~g}}{32.00 \mathrm{~g} / \mathrm{mol}}=2.50 \mathrm{~mol}$ | $\mathrm{M}_{\mathrm{NaCl}}$ <br> $1 \mathrm{Na}=22.99 \mathrm{~g} / \mathrm{mol}$ <br> $\mathrm{n}_{\mathrm{NaCl}}=\mathrm{n}_{\mathrm{O}_{2}} \times \frac{2}{3}=1.67 \mathrm{~mol}$ <br> $\mathrm{~m}_{\mathrm{NaCl}}=\mathrm{nM}=1.67 \mathrm{~mol} \times 58.44 \mathrm{~g} / \mathrm{mol}=97.4 \mathrm{~g}$ |
| :--- | :--- |
| $\frac{1 \mathrm{Cl}=35.45 \mathrm{~g} / \mathrm{mol}}{58.44 \mathrm{~g} / \mathrm{mol}}$ |  |

9. Given the following equation: $\mathrm{Cu}+2 \mathrm{AgNO}_{3} \ldots->\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$

How many moles of $\mathbf{C u}$ are needed to react with 3.50 moles of $\mathrm{AgNO}_{3}$ ?
$\mathbf{C u}+2 \mathbf{A g N O}_{3} \rightarrow \mathbf{C u}\left(\mathbf{N O}_{3}\right)_{2}+\mathrm{MnCl}_{2}+2 \mathbf{~ A g}$ (aq)
$\mathrm{n}=? ? ? \quad \mathrm{n}=3.50 \mathrm{~mol}$
$\mathrm{n}_{\mathrm{Cu}}=\mathrm{n}_{\mathrm{AgNO}_{3}} \times \frac{1}{2}=3.50 \mathrm{~mol} \times \frac{1}{2}=1.75 \mathrm{~mol}$

If 89.5 grams of Ag were produced, how many grams of Cu reacted?
$\mathbf{C u}+2 \mathbf{A g N O}_{3} \rightarrow \mathbf{C u ( \mathbf { N O } _ { 3 } ) _ { 2 }}+\underset{(\mathrm{aq})}{\mathrm{MnCl}_{2}}+2 \mathbf{A g}$
$\mathrm{m}=$ ??? $\quad \mathrm{m}=$ 89.5 g
$\mathrm{n}_{\mathrm{Ag}}=\frac{\mathrm{m}}{\mathrm{M}}=\frac{89.5 \mathrm{~g}}{107.87 \mathrm{~g} / \mathrm{mol}}=0.829 \mathrm{~mol}$
$\mathrm{n}_{\mathrm{Cu}}=\mathrm{n}_{\mathrm{Ag}} \times \frac{1}{2}=0.829 \mathrm{~mol} \times \frac{1}{2}=0.415 \mathrm{~mol}$
$\mathrm{m}_{\mathrm{Ci}}=\mathrm{nM}=0.415 \mathrm{~mol} \times 63.55 \mathrm{~g} / \mathrm{mol}=26.4 \mathrm{~g}$
10. Molten iron and carbon monoxide are produced in a blast furnace by the reaction of iron(III) oxide and coke (pure carbon). If $\mathbf{2 5 . 0}$ kilograms of pure $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is used, how many kilograms of iron can be produced? The reaction is: $\mathrm{Fe}_{2} \mathrm{O}_{\mathbf{3}}+\mathbf{3 C \rightarrow 2} \mathbf{~ F e}+\mathbf{3 C O}$
$\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathbf{3 C} \rightarrow \mathbf{2 F e}+\underset{(\mathrm{aq})}{\mathrm{MnCl}_{2}}+\mathbf{3 ~ C O}$
$\begin{array}{ll}\mathrm{m}=25.0 & \mathrm{~m}(\mathrm{~kg})= \\ \mathrm{kg} & ? ? ?\end{array}$
Note that since you are asked for the mass in kg and given the mass in kg , then you don't need to convert to grams. Just keep the " k " and cancel out everything you can, and the answer will turn out in kg .
$\mathrm{n}_{\mathrm{Fe}_{2} \mathrm{O}_{3}}=\frac{\mathrm{m}}{\mathrm{M}}=\frac{25.0 \mathrm{~kg}}{159.69 \mathrm{~g} / \mathrm{mol}}=0.156 \mathrm{kmol}$
(Note only the " g " 's cancel; left with kmol )
$\mathrm{n}_{\mathrm{Fe}}=\mathrm{n}_{\mathrm{Fe}_{2} \mathrm{O}_{3}} \times 2=0.156 \mathrm{kmol} \times 2=0.312 \mathrm{kmol}$
$\mathrm{m}_{\mathrm{Fe}}=\mathrm{nM}=0.312 \mathrm{kmol} \times 55.85 \mathrm{~g} / \mathrm{mol}=17.5 \mathrm{~kg}$
(Note only the "mol" cancels; left with " kg ")
11. The average human requires 120.0 grams of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ per day. How many grams of $\mathrm{CO}_{2}$ (in the photosynthesis reaction) are required for this amount of glucose? The photosynthetic reaction is: $6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$---> $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$

$$
\begin{aligned}
& 6 \mathrm{CO}_{2}+{ }_{\mathrm{H}}^{2} \mathrm{O} \rightarrow \\
& \mathrm{H}=? ? \text { ? } \\
& \mathrm{m} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \\
& \mathrm{~m}=120.0
\end{aligned}
$$

| $\mathrm{n}_{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}=\frac{\mathrm{m}}{\mathrm{M}}=\frac{120.0 \mathrm{~g}}{180.18 \mathrm{~g} / \mathrm{mol}}=0.6660 \mathrm{~mol}$ | $\frac{\mathrm{M}_{\mathrm{C}_{6} H_{12} O_{6}}}{6 \mathrm{C}=72.06 \mathrm{~g} / \mathrm{mol}}$ | $\frac{\mathrm{M}_{\mathrm{CO}_{2}}}{\mathrm{C}=12.01 \mathrm{~g} / \mathrm{mol}}$ |
| :--- | :--- | :--- |
| $\mathrm{n}_{\mathrm{CO}_{2}}=\mathrm{n}_{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times \frac{6}{1}=0.6660 \mathrm{~mol} \times \frac{6}{1}=3.996 \mathrm{~mol}$ | $12 \mathrm{H}=12.12 \mathrm{~g} / \mathrm{mol}$ | $2 \mathrm{O}=32.00 \mathrm{~g} / \mathrm{mol}$ |
| $\mathrm{m}_{\mathrm{CO}_{2}}=\mathrm{nM}=3.996 \mathrm{~mol} \times 44.01 \mathrm{~g} / \mathrm{mol}=175.9 \mathrm{~g}$ | $\frac{6 \mathrm{O}=96.00 \mathrm{~g} / \mathrm{mol}}{180.18 \mathrm{~g} / \mathrm{mol}}$ | $44.01 \mathrm{~g} / \mathrm{mol}$ |

12. Given the reaction: $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \cdots \mathbf{N O}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}$ (l)

When 1.20 mole of ammonia reacts, the total number of moles of products formed is:
a. 1.20 b. 1.50 c. 1.80 d. 3.00 e. 12.0

The correct answer is d .
$\mathrm{NH}_{3} /\left(\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}\right)=4 / 10$
$4 / 10=1.20 / \mathrm{xx}=3.00 \mathrm{~mol}$

