SCH3U Solutions Unit Review

1.	Definitions:						
a)	miscible	b)	immiscible	(c)	solute	(d)	solvent
e)	solution	f)	unsaturated	(g)	saturated	(h)	supersaturated
i)	pН	j)	acid	(k)	base	(1)	neutral
m)	neutralization	n)	aqueous	(o)	electrolyte		

- 2. What is the universal solvent and why?
- 3. Make the following calculations and be sure to include the units in your answer:
- a) What is the w/w % of brass where there is 27 g of aluminum dissolved in 123 g of copper?
- b) What is the w/v % of a solution with 4.00g of sodium monoflourophosphate in 96.0 mL of water?
- c) What is the v/v% of a solution with 4.00 mL of acetic acid in 96.0 mL of water?
- 4. What is the molar concentration of a solution that has 730 g of hydrogen chloride dissolved in 10.0 mL of water?
- 5. What mass of bromine gas can be found in 355 mL of a solution with a concentration of 2.54 M?
- 6. What is the volume of a solution that contains 15.0 mol of sodium acetate and has a concentration of 2.00 M?
- 7. What is the volume of concentrated sulfuric acid (18 M) that is required to make 7.00 L of 0.15 M H₂SO₄?
- 8. What is the concentration of a diluted base if you have made 10.0 L from only 10.0 mL of 15 M NaOH?
- 9. What makes an acid and a base a base?
- 10. What are 5 characteristics of acids?
- 11. What are 5 characteristics of bases?
- What is the pH of a solution of 2.70×10^{-4} M hydrochloric acid?
- What is the hydronium ion $(H_3O^+, \text{ same as H}^+)$ concentration of a pH 2.50 acid?
- 14. What is a titration experiment and why is it important?
- 15. Titration reveals that 11.6 mL of 3.0 M sulfuric acid are required to neutralize the sodium hydroxide in 250.0mL of NaOH solution. What is the molarity of the NaOH solution?
- 16. If it takes 50 mL of 0.5 M KOH solution to completely neutralize 125 mL of sulfuric acid solution (H₂SO₄), what is the concentration of the H₂SO₄ solution?

- a) what is the solubility of NaNO₃ at 45 °C?
- b) At what temperature are the two nitrates equally soluble?
- c) At 30 °C what volume of water is required to dissolve 45.0 g of KI?
- d) what solute shows an inverse relationship between solubility and temperature?
- e) Shade the region of the graph where NaCl is unsaturated and KClO₃ is supersaturated.

Answers

- 1. consult text or notes 2. Water is the universal solvent. This is because it dissolves nearly any solute. (a) w/w % = 27 g Al / 150 g solution x 100% =3. 18 %w/w % (b) w/v % = 4.00 g solute / 96 mL solvent =4.17 % w/v% (c) v/v % = 4.00 mL solute / 100 mL solution =4.00 % v/v % Units for molar concentration include M (molarity) and mol / L m = 730 g thus n = 730 g / 36.5 g.mol = 20.0 mol; $C = n/V = 20.0 \text{ mol} / 0.010 \text{ L} = 2.0 \text{ x } 10^3 \text{ M}$ 5. n= 2.54 M * 0.355 L = 0.902 mol; m= 0.902 mol * 159.8 g/mol = 144 g6. v = n/C; V = 15.0 mol / 2.00 mol/L = 7.5 L7. $C_1V_1 = C_2V_2$; 18 M (V_1) = 0.15 M (7.00 L); V_1 = 0.0583 L = 58 mL 8. $C_1V_1 = C_2V_2$; 10.0 L (C_1) = 0.010 L(15M); C_1 = 0.015 M **q.** Bronsted Lowry and Arrhenius definitions are required here. 10+11. Consult notes 12. pH = $-\log [H_3O^+(aq)] = 3.569$ pH = $-\log [2.76 \times 10^{-4}] = 3.569$ 13. $[H_3O^+(aq)] = 10^{-pH} = 3.16 \times 10^{-3} M$ $\rightarrow 10^{-2.50} = 3.16 \times 10^{-3} \text{ mol}/L$ 14. See notes
 - 15. 0.28M NaOH
 - 16. 0.1 M
- d) 110 g/ 100 mL (b) none, they all show a direct relationship
 - (b) 68 °C
- c) 25 mL of water
- (e) see discussion

3. a)
$$w/w \% = \frac{\text{solute(g)}}{\text{solution(g)}} \times 100\%$$

$$= \frac{27}{27 + 123} \times 100\%$$

$$= 18\%$$
b) $w/v\% = \frac{\text{solute(g)}}{\text{solution(mL)}} \times 100\%$

$$= \frac{49}{96 + 4} \times 100$$

$$= 4\%$$

$$= 4\%$$
4. $C = \frac{n}{V}$

$$= \frac{36.46}{4 + 96}$$

$$= 200 \text{ mol/L}$$

$$= \frac{10 \text{ mL}}{1000} = 0.01 \text{ L}$$

5.
$$N = C \times V$$

$$= 2.54 \text{ mol}/L \times 0.355 L = 0.9017 \times 159.808$$

$$= 0.9017 \text{ mol}$$

$$= 0.9017 \text{ mol}$$

```
15. H<sub>2</sub>SO<sub>4</sub> +2NaOH →2H<sub>2</sub>O + Na<sub>2</sub>SO<sub>4</sub>
    V= 11.6 mL=1000 V= 250mL
     = 0.0116L
                 = 0.250 L
    C= 3.0 mol/L
                ) C= ?
                n=0.0696
n= CxV
                 C== 0.0696mol = 0.2784 mol
 = 3×0.0116
                         0.250 L
  = 0.0348 mol
            x 2
16. 2KOH + H2SO4 ->2H2O + K2SO4
               V=125mL
  V=50mL
   =0.05L
                 =0.1251
                C= = 0.0125 = 0.1 mol/L
  C= 0.5 mol
                n=0.0125
n=CxV
  =0.025mol
      1 :2x1
```