Le Chatelier's Principle

- Le Chatelier's Principle states: If something is changed in a system at equilibrium, the system shifts in equilibrium composition in order to counteract (or oppose) this change.

Le Chatelier's Principle

- A change imposed on an equilibrium system is called a stress.
- There are 3 types of stress:

1) Changing concentration
2) Changing temperature
3) Changing pressure (for gases)

- The equilibrium always responds in such a way so as to counteract the stress.

Concentration Changes

- If concentration is increased
- shifts to consume some of the added reactant or product
- If concentration is decreased
- shifts to replace some of the removed reactant or product
e.g. $2 \mathrm{~A}_{(\mathrm{g})} \leftrightarrow 2 \mathrm{~B}_{(\mathrm{g})}+\mathrm{C}_{(\mathrm{g})}+100 \mathrm{~kJ}$
- If A is added, shifts right
- If B is added, shifts left
- If A is removed, shifts left

Temperature Changes

- If temperature is increased
- shifts to consume some of the added thermal energy
- If temperature is decreased
- shifts to replace some of the removed thermal energy
- Energy is treated as a reactant (endothermic) or product (exothermic)
e.g. $2 \mathrm{~A}_{(\mathrm{g})} \leftrightarrow 2 \mathrm{~B}_{(\mathrm{g})}+\mathrm{C}_{(\mathrm{g})}+100 \mathrm{~kJ}$
- If temperature is reduced, shifts right
- If temperature is increased, shifts left
e.g. $X_{(\mathrm{g})}+100 \mathrm{~kJ} \leftrightarrow \mathrm{Y}_{(\mathrm{g})}$
- If temperature is increased, shifts right

Gas Volume Changes

- To predict whether a change in pressure will affect equilibrium, consider total moles of gas reactants and total moles of gas products.
e.g. $\quad 2 \mathrm{~A}_{(\mathrm{g})} \leftrightarrow 2 \mathrm{~B}_{(\mathrm{g})}+\mathrm{C}_{(\mathrm{g})}+100 \mathrm{~kJ}$ (2 moles) (3 moles)
- If volume is increased (pressure is decreased)
- shifts toward the side with the larger number of moles of gaseous entities i.e. shifts right
- If volume is decreased (pressure is increased)
- shifts toward in the direction that has the smaller number of moles i.e. shifts left
Note - In some cases there is no shift because

$$
\mathrm{n}_{\text {reactants }}=\mathrm{n}_{\text {products }}
$$

Other Effects?

Adding catalyst

- affects only how fast reaction reaches equilibrium
- no overall effect on equilibrium

Nature of Reactants
Only affect how fast reaction reaches equilibrium

- no effect overall

Adding inert gases (keeping volume constant)

- no effect on equilibrium
- See Summary Table p 456

