# **Electrons in Atoms**



III. Quantum Model of the Atom

## **Electrons as Waves**

# **XLouis de Broglie (1924)**△Applied wave-particle theory to e<sup>-</sup> △e<sup>-</sup> exhibit wave properties QUANTIZED WAVELENGTHS



### **Electrons as Waves**

#### **QUANTIZED WAVELENGTHS**



## **Electrons as Waves**

#### **EVIDENCE: DIFFRACTION PATTERNS**





#### **VISIBLE LIGHT**



# **Quantum Mechanics**

#### **#Heisenberg Uncertainty Principle**

Impossible to know both the velocity and position of an electron at the same time



# **Quantum Mechanics**

Schrödinger Wave Equation (1926)
⊡finite # of solutions ⇒ quantized energy levels

defines probability of finding an e<sup>-</sup>

$$\Psi_{1s} = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-\sigma}$$

# **Quantum Mechanics**

#### **Crbital** ("electron cloud")

# Region in space where there is 90% probability of finding an e<sup>-</sup>



Electron Probability vs. Distance

**Radial Distribution Curve** 

#### **#Four Quantum Numbers:**

#### Specify the "address" of each electron in an atom



#### 1. Principal Quantum Number (n)

Energy level Size of the orbital  $\square n^2 - \#$  of orbitals in

n<sup>2</sup> = # of orbitals in the energy level



2. Angular Momentum Quantum # (1)
△ Energy sublevel
△ Shape of the orbital
△ I = 0,1,2,... (n-1)











%n = # of sublevels per level %n<sup>2</sup> = # of orbitals per level %Sublevel sets: 1s, 3p, 5d, 7f

3. Magnetic Quantum Number  $(m_l)$ 

Orientation of orbital

Specifies the exact orbital within each sublevel

 $m_l = -l \rightarrow +l$ 





©NCSSM 2003



# Crbitals combine to form a spherical shape.



# 4. Spin Quantum Number ( $m_s$ ) $\square$ Electron spin $\Rightarrow m_s = +\frac{1}{2}$ or $-\frac{1}{2}$

An orbital can hold 2 electrons that spin in opposite directions.



#### **%Pauli Exclusion Principle**

- No two electrons in an atom can have the same 4 quantum numbers.
- ▲Each e<sup>-</sup> has a unique "address":
  - 1. Principal  $\# \rightarrow$  energy level
  - 2. Ang. Mom. #  $\rightarrow$  sublevel (s,p,d,f)
  - 3. Magnetic #  $\rightarrow$  orbital orientation 4. Spin #  $\rightarrow$  electron

# Feeling overwhelmed?

