Electrons in Atoms

II. Quantum Model of the Atom

Electrons as Waves

\mathscr{H} Louis de Broglie (1924)

®Applied wave-particle theory to e^{-}
囚e- exhibit wave properties

QUANTIZED WAVELENGTHS

Electrons as Waves

QUANTIZED WAVELENGTHS

Electrons as Waves

EVIDENCE: DIFFRACTION PATTERNS

VISIBLE LIGHT

ELECTRONS

Quantum Mechanics

\&Heisenberg Uncertainty Principle

®Impossible to know both the velocity and position of an electron at the same time

Quantum Mechanics

HSchrödinger Wave Equation (1926)

®finite \# of solutions \Rightarrow quantized energy levels
®defines probability of finding an e^{-}

$$
\Psi_{1 \mathrm{~s}}=\frac{1}{\sqrt{\pi}}\left(\frac{\mathrm{Z}}{a_{0}}\right)^{3 / 2} e^{-\sigma}
$$

Quantum Mechanics

\&Orbital ("electron cloud")

\triangle Region in space where there is 90% probability of finding an e^{-}

Orbital

Radial Distribution Curve

\&Four Quantum Numbers:

®Specify the "address" of each electron in an atom

Quantum Numbers

1. Principal Quantum Number (n)
®Energy level

Quantum Numbers

2. Angular Momentum Quantum \# (l)
®Energy sublevel
囚Shape of the orbital

$$
\text { 囚 }=0,1,2, \ldots(n-1)
$$

$S=0$

$d=2$

$f=3$

Quantum Numbers

$\mathscr{H} \mathrm{n}=\#$ of sublevels per level
$\mathscr{H} \mathrm{n}^{2}=\#$ of orbitals per level
HSublevel sets: 1s, 3p, 5d, 7f

Quantum Numbers

3. Magnetic Quantum Number (m_{l})

囚Orientation of orbital
®Specifies the exact orbital within each sublevel
囚 $m_{l}=-l \rightarrow+l$

Quantum
 Numbers

Quantum Numbers

\mathscr{H} Orbitals combine to form a spherical shape.

Quantum Numbers

4. Spin Quantum Number (m_{s})

®Electron spin $\Rightarrow \boldsymbol{m}_{s}=+1 / 2$ or $-1 / 2$
®An orbital can hold 2 electrons that spin in opposite directions.

Quantum Numbers

\& Pauli Exclusion Principle

©No two electrons in an atom can have the same 4 quantum numbers.
®Each e- has a unique "address":

1. Principal \# \rightarrow energy level
2. Ang. Mom. \# \rightarrow sublevel (s,p,d,f)
3. Magnetic \# \rightarrow orbital orientation 4. Spin \# \rightarrow electron

Feeling overwhelmed?

Dr. Callaway, may I be excused? My brain is full."

