Reversible Reactions

Unit 4 Equilibrium

Most chemical reactions are considered irreversible - the products that are made cannot readily be changed back into their reactants.

For example, when wood burns it is impossible to turn it back into unburnt wood again!

Similarly, when magnesium reacts with hydrochloric acid to form magnesium chloride and hydrogen, it is not easy to reverse the reaction and obtain the magnesium.

(1) What are reversible reactions?

Reversible reactions occur when the backwards reaction (products \rightarrow reactants) takes place relatively easily under certain conditions.
A
B

C $+$
D
(reactants)
(products)

For example, during a reversible reaction reactants \mathbf{A} and \mathbf{B} react to make products \mathbf{C} and \mathbf{D}.

However, products \mathbf{C} and \mathbf{D} can also undergo the reverse reaction, and react together to form reactants \mathbf{A} and \mathbf{B}.

Reporible and irroversible reaction board Reversible and irreversible reactions ${ }^{\text {bourarks }}$

What kind of reactions are reversible and irreversible?

Reversible biochemical reactions

Many biochemical reactions (those that take place inside organisms) are reversible.

For example, in the lungs, oxygen binds to haemoglobin (Hb) in red blood cells to create oxyhaemoglobin.

When the red blood cells are transported to tissues, the oxyhaemoglobin dissociates back to haemoglobin and oxygen.

$$
\mathrm{Hb} \quad+\quad 4 \mathrm{O}_{2} \quad \rightleftharpoons \quad \mathrm{Hb} .4 \mathrm{O}_{2}
$$

There are also some very important industrial reactions, like the Haber process, that are reversible.

Heating copper sulfate

What happens when hydrated copper sulfate is heated?

Hydrated copper (II) sulfate undergoes a reversible reaction when heated.

Click "play" to see what happens in this reaction.

Heating ammonium chloride

An ammonium salt can be made by reacting ammonia with an acid. Some of the salt will decompose back into the reactants when heated.

ammonia	+hydrogen chloride\rightleftharpoons
$\mathrm{NH}_{3}(\mathrm{~g})$	$+\mathrm{HCl}(\mathrm{g})$
\rightleftharpoons	ammonium chloride
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$	

$\mathrm{NH}_{4} \mathrm{Cl}$ decomposes back into NH_{3} and HCl gases when heated

Example of a Reversible Reaction

- Heat $+\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
temp

Warmer

temp
http://www.youtube.com/watch?v=j1ALRRos-AA

EQUILIBRIUM REACTIONS

Initially, there is no backward reaction but, as products form, it speeds up and provided the temperature remains constant there will come a time when the backward and forward reactions are equal and opposite; the reaction has reached equilibrium.

In an equilibrium reaction, not all the reactants end up as products; there is not a 100\% conversion.

BUT IT DOESN'T MEAN THE REACTION IS STUCK IN THE MIDDLE

DYNAMIC EQUILIBRIUM

 IMPORTANT REMINDERS- a reversible chemical reaction is a dynamic process
- everything may appear stationary but the reactions are moving both ways
- the position of equilibrium can be varied by changing certain conditions

Trying to get up a "down" escalator gives an excellent idea of a non-chemical situation involving dynamic equilibrium.
Summary: When a chemical equilibrium is established ...

- both the reactants and the products are present at all times
- the equilibrium can be approached from either side
- the reaction is dynamic - it is moving forwards and backwards
fhe concentrations of reactants and products remain constant

Analogy to Chemical Equilibrium

OTwo yards with a lemon tree on the border. Older and younger person throwing lemons back and forth.

Amount on each side is constant but not equal

Equilibrium in a Closed System

Simply states "If the concentrations of all the substances present at equilibrium are raised to the power of the number of moles they appear in the equation, the product of the concentrations of the products divided by the product of the concentrations of the reactants is a constant, provided the temperature remains constant"

See example on the next slide.
There are several forms of the constant; all vary with temperature.
K_{c} the equilibrium values are expressed as concentrations of mol/L

Other examples include Ksp, Ka, Kb, Kw

©THE EQUILIBRIUM CONSTANT K

for an equilibrium reaction of the form...

$$
\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}
$$

then (at constant temperature), $\frac{[C]^{c} \cdot[D]^{d}}{[A]^{d} \cdot[B]^{b}}=K_{c}$ $[A]^{\mathrm{a}} \cdot[\mathrm{B}]^{\mathrm{b}}$
where[] denotes the equilibrium concentration in mol/L and K_{c} is a constant known as the Equilibrium Constant Do not include solids and liquids in the expression.

Example $\left.\quad \mathrm{Fe}^{3+(} \mathrm{aq}\right) \quad+\mathrm{NCS}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{FeNCS}^{2+}(\mathrm{aq})$

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{FeNCS}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{NCS}^{-}\right]}
$$

Group Work

OWrite the equilibrium constant expressions $\left(\mathrm{K}_{\mathrm{c}}\right)$ for the following reactions:
(1)CO $(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$22 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
$32 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NaCl}(\mathrm{s})$
(1) $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right] /[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{3}$
(2) $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3} /\left[\mathrm{NH}_{3}\right]^{2}$
$3 \mathrm{~K}_{\mathrm{c}}=1 /\left[\mathrm{Cl}_{2}\right]$

VALUE OF K

AFFECTED by

- a change of temperature

NOT AFFECTED by - a change in concentration of reactants or products

- a change of pressure
- adding a catalyst

Phe Equilibrium Constant

The Magnitude of Equilibrium Constants

- The equilibrium constant, K, is the ratio of products to reactants.
- Therefore, the larger K the more products are present at equilibrium.
- Conversely, the smaller K the more reactants are present at equilibrium.
- If $K \gg 1$, then products dominate at equilibrium and equilibrium favours the right of the reaction.
- If $K \ll 1$, then reactants dominate at equilibrium and equilibrium lies to the left side of the
Sreaction.

Manipulation of K

$-2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 2 \mathrm{H}_{2}+\mathrm{O}_{2}$
$\mathrm{K}_{1}=\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right] /\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}$
$\mathrm{OH}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2}+1 / 2 \mathrm{O}_{2}$
$\mathrm{K}_{2}=\mathrm{K}_{1}{ }^{1 / 2}=\left(\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right] /\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}\right)^{1 / 2}=\left[\mathrm{H}_{2}\right]\left[\mathrm{O}_{2}\right]^{1 / 2} /\left[\mathrm{H}_{2} \mathrm{O}\right]$
${ }^{\mathbf{O}} 2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{K}_{3}=\mathrm{K}_{1}^{-1}=\left(\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right] /\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}\right)^{-1}=\left[\mathrm{H}_{2} \mathrm{O}\right]^{2 /}\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]$

Are these reactions reversible or irreversible?

reversible irreversible

Haber process

True or false?

Are these statements about dynamic equilibrium true or false?

1. The position of equilibrium can be changed.
2. The forward and backward reactions take place at the same rate.
3. The equilibrium is always at a half-way point.
4. Only reversible reactions reach equilibrium.
5. Adding a catalyst changes the position of dynamic equilibrium.
6.

Dynamic equilibrium can only take place in a closed system.

Once a system has reached equilibrium, are the

 following true or false?-The reaction is finished, no more products are forming.
-The concentrations of the reactants and the products are equal.
-The concentrations are no longer changing.
-The reaction is not over, but will continue forever if isolated.
-The speed at which products are made equals the speed at which reactants form.

- Once a system has reached equilibrium, are the following true or false?
- The reaction is finished, no more products are forming. false
- The concentrations of the reactants and the products are equal. false
- The concentrations are no longer changing. false
- The reaction is not over, but will continue forever if isolated. true
- The speed at which products are made equals the speed at which reactants form. _true

More Questions

1. What is equal at equilibrium?
2. What general information can be gathered by observing the magnitude of the equilibrium constant?
3. Write the expression for $K_{\text {eq }}$ for the reaction:
$2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl} 2$ (g) $\leftrightarrow 2 \mathrm{NOCl}(\mathrm{g})$
4. Write the $K_{\text {eq }}$ for:

2 K3PO4 (aq) $+3 \mathrm{Ca}(\mathrm{NO} 3) 2$ (aq) $\leftrightarrow 6$ KNO3 (aq) $+\mathrm{Ca3}(\mathrm{PO} 4) 2(\mathrm{~s})$

ANSWERS

1. What is equal at equilibrium? rate forward = rate reverse
2. What general information can be gathered by observing the magnitude of the equilibrium constant?

- Whether the reactants or products are favoured.

3. Write the expression for $K_{\text {eq }}$ for the reaction:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl} 2(\mathrm{~g}) \leftrightarrow 2 \mathrm{NOCl}(\mathrm{~g})
$$

$$
\mathrm{K}_{\mathrm{eq}}=\frac{[\mathrm{NOCl}]^{2}}{[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]}
$$

4. Write the $K_{\text {eq }}$ for:

2 K3PO4 (aq) $+3 \mathrm{Ca}(\mathrm{NO}) 2(\mathrm{aq}) \leftrightarrow 6 \mathrm{KNO}(\mathrm{aq})+\mathrm{Ca} 3(\mathrm{PO} 4) 2(\mathrm{~s})$

$$
\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{KNO}_{3}\right]^{6}}{\left[\mathrm{~K}_{3} \mathrm{PO}_{4}\right]^{2}\left[\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\right]^{3}}
$$

More Questions

5. Write the expression for $K_{\text {eq }}$ for the reaction : $\mathrm{H} 2(\mathrm{~g})+\mathrm{Br} 2(\mathrm{I}) \leftrightarrow 2 \mathrm{HBr}(\mathrm{g})$
6. Write the expression for $K_{\text {eq }}$ for the reaction: $\mathrm{CO} 2(\mathrm{~g})+\mathrm{CaO}(\mathrm{s}) \leftrightarrow \mathrm{CaCO} 3(\mathrm{~s})$
7. For the reaction: $\mathrm{SiH} 4(\mathrm{~g})+2 \mathrm{O} 2(\mathrm{~g}) \leftrightarrow$ $\mathrm{SiO} 2(\mathrm{~g})+2 \mathrm{H} 2 \mathrm{O}$ (I)
a) Write the equilibrium expression for the forward reaction.
b) Write the equilibrium expression for the reverse reaction

ANSWERS

5. Write the expression for $K_{\text {eq }}$ for the reaction :

$$
\mathrm{H} 2(\mathrm{~g})+\mathrm{Br} 2(\mathrm{I}) \leftrightarrow 2 \mathrm{HBr}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{eq}}=\frac{[\mathrm{HBr}]^{2}}{\left[\mathrm{H}_{2}\right]}
$$

6. Write the expression for $K_{\text {eq }}$ for the reaction:

$$
\mathrm{CO} 2(\mathrm{~g})+\mathrm{CaO}(\mathrm{~s}) \leftrightarrow \mathrm{CaCO} 3(\mathrm{~s}) \quad \mathrm{K}_{\mathrm{eq}}=\frac{1}{\left[\mathrm{CO}_{2}\right]}
$$

7. For the reaction: $\mathrm{SiH} 4(\mathrm{~g})+2 \mathrm{O} 2(\mathrm{~g}) \leftrightarrow \mathrm{SiO} 2(\mathrm{~g})+2 \mathrm{H} 2 \mathrm{O}(\mathrm{I})$
a) Write the equilibrium expression for the forward reaction.

$$
\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{SiO}_{2}\right]}{\left[\mathrm{SiH}_{4}\right]\left[\mathrm{O}_{2}\right]^{2}}
$$

b) Write the equilibrium expression for the reverse reaction

$$
\mathrm{K}_{\mathrm{eq}}^{\prime}=\frac{\left[\mathrm{SiH}_{4}\right]\left[\mathrm{O}_{2}\right]^{2}}{\left[\mathrm{SiO}_{2}\right]}=\frac{1}{\mathrm{~K}_{\mathrm{eq}}}
$$

More Questions - calculating K and Q (given concentrations)

c) What is the equilibrium constant in the forward direction if $\left[\mathrm{SiH}_{4}\right]=0.45 \mathrm{M} ;\left[\mathrm{O}_{2}\right]=$ 0.25 M ; and $\left[\mathrm{SiO}_{2}\right]=0.15 \mathrm{M}$ at equilibrium?
d) What is the equilibrium constant in the reverse reaction?
e) If $\left[\mathrm{SiH}_{4}\right]=0.34 \mathrm{M} ;\left[\mathrm{O}_{2}\right]=0.22 \mathrm{M}$ and $\left[\mathrm{SiO}_{2}\right]=$ 0.35 M , what would be the reaction quotient (Q) in the forward direction and which direction will the reaction go?

ANSWERS

c) What is the equilibrium constant in the forward direction if $\left[\mathrm{SiH}_{4}\right]$ $=0.45 \mathrm{M} ;\left[\mathrm{O}_{2}\right]=0.25 \mathrm{M}$; and $\left[\mathrm{SiO}_{2}\right]=0.15 \mathrm{M}$ at equilibrium ?

$$
\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{SiO}_{2}\right]}{\left[\mathrm{SiH}_{4}\right]\left[\mathrm{O}_{2}\right]^{2}}=\frac{0.15}{(0.45)(0.25)^{2}}=5.3
$$

d) What is the equilibrium constant in the reverse reaction?

$$
\mathrm{K}_{\mathrm{eq}}^{\prime}=\frac{1}{5.3}=0.19
$$

e) If $\left[\mathrm{SiH}_{4}\right]=0.34 \mathrm{M} ;\left[\mathrm{O}_{2}\right]=0.22 \mathrm{M}$ and $\left[\mathrm{SiO}_{2}\right]=0.35 \mathrm{M}$, what would be the reaction quotient (Q) in the forward direction and which direction will the reaction go?

$$
\mathrm{Q}=\mathrm{K}_{\mathrm{eq}}=\frac{0.35}{(0.34)(0.22)^{2}}=21
$$

$Q=21>K_{C}=0.053$ then the reaction will go towards the reactants

Calculating Kc (given concentrations)

Ex. Calculate the equilibrium constant for this reaction: $2 \mathrm{PO}_{2} \mathrm{Br}(\mathrm{aq}) \leftrightarrow 2 \mathrm{PO}_{2}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{aq})$ Given: $\left[\mathrm{PO}_{2} \mathrm{Br}\right]=0.0255 \mathrm{M},\left[\mathrm{PO}_{2}\right]=0.155 \mathrm{M}$, and $\left[\mathrm{Br}_{2}\right]=$ 0.00351 M at equilibrium.

$$
2 \mathrm{PO}_{2} \mathrm{Br} \leftrightarrow 2 \mathrm{PO}_{2}+\mathrm{Br}_{2} \quad \mathrm{~K}_{\mathrm{eq}}=\frac{\left[\mathrm{PO}_{2}\right]^{2}\left[\mathrm{Br}_{2}\right]}{\left[\mathrm{PO}_{2} \mathrm{Br}\right]^{2}}
$$

$$
\mathrm{K}_{\mathrm{eq}}=\frac{(0.155)^{2}(0.00351)}{(0.0255)^{2}}=0.130
$$

Calculations using ICE tables

${ }^{-}$ICE tables are used to organize data

- I = initial concentration
$\lrcorner \mathrm{C} \equiv$ change in concentration
$\lrcorner \mathrm{E} \equiv$ equilibrium concentration
${ }^{-}$Can use this format to SOLVE for changes -Coefficients from balanced equation are used to determine the CHANGE
${ }^{-}$Can solve equation to find equilibrium concentrations

Ex. 1 For the reaction: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HF}(\mathrm{g})$, board calculate all three equilibrium concentrations when initially $\left[\mathrm{H}_{2}\right]=\left[\mathrm{F}_{2}\right]=0.200 \mathrm{M}$ and $\mathrm{Kc}=\mathbf{6 4 . 0}$.

$$
\begin{aligned}
& \mathrm{H}_{2} \quad+\quad \mathrm{F}_{2} \quad \leftrightarrow \quad 2 \mathrm{HF} \quad \mathrm{~K}_{\mathrm{eq}}=\frac{[\mathrm{HF}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{F}_{2}\right]}=64.0 \\
& K_{\text {eq }}=\frac{(2 x)^{2}}{(0.200-x)(0.200-x)}=64.0 \text { perfect square } \\
& \sqrt{\frac{(2 x)^{2}}{(0.200-x)(0.200-x)}}=\sqrt{64.0} \\
& \frac{2 \mathrm{x}}{0.200-\mathrm{x}}=8.00 \\
& 2 \mathrm{x}=1.60-8.00 \mathrm{x} \\
& 10.00 \mathrm{x}=1.60 \\
& x=\frac{1.60}{10.00}=0.160 \\
& \therefore\left[\mathrm{H}_{2}\right]_{\mathrm{eq}}=\left[\mathrm{F}_{2}\right]_{\mathrm{eq}}=0.200-0.160=0.040 \mathrm{M} \text { and }[\mathrm{HF}]_{\mathrm{eq}}=2(0.160)=0.320 \mathrm{M}
\end{aligned}
$$

Ex. 2 For the reaction, $\mathrm{COCl}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$, calculate allboard three equilibrium concentrations when $\mathrm{Kc}=0.680$ with initial concentrations: $[\mathrm{CO}]=0.500 \mathrm{~mol} / \mathrm{L}$ and $\left[\mathrm{Cl}_{2}\right]=1.00 \mathrm{~mol} / \mathrm{L}$.

$$
\mathrm{COCl}_{2} \leftrightarrow \mathrm{CO}+\mathrm{Cl}_{2} \quad \mathrm{~K}_{\mathrm{eq}}=\frac{[\mathrm{CO}]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{COCl}_{2}\right]}=0.680
$$

Ex. 3 We place $0.0640 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ in a 4.00 L flask ${ }^{\text {Woard. }}$ at 200 K . After reaching equilibrium, the concentration of $\mathrm{NO}_{2}(\mathrm{~g})$ is $0.00300 \mathrm{~mol} / \mathrm{L}$. What is Kc for the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$?

$$
\mathrm{N}_{2} \mathrm{O}_{4} \quad \leftrightarrow \quad 2 \mathrm{NO}_{2} \quad \mathrm{~K}_{\mathrm{eq}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}
$$

I 0.0160
0
C $-x \quad+2 x$
E 0.0160 $+2 \mathrm{x}$ $\operatorname{but}\left[\mathrm{NO}_{2}\right]_{\text {eq }}=0.00300 \mathrm{M}$

$$
\begin{aligned}
2 \mathrm{x} & =0.00300 \therefore \mathrm{x}=0.00150 \\
\mathrm{~K}_{\mathrm{eq}} & =\frac{(0.00300)^{2}}{(0.0160-0.00150)}=6.21 \times 10^{-4}
\end{aligned}
$$

Problems Using Approximation

To avoid using the quadratic formula, it may be possible to approximate.

First do the following check:
If the initial concentration (the smallest value if there's more than one) divided by the K_{c} is greater than 500, then you may approximate.

This means that you may omit any "plus or minus x values" in the equilibrium equation.

Ex. 4 Carbonyl bromide decomposes to carbon monoxide

 and bromine: $\mathrm{COBr}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \mathrm{Kc}$ is 1.90×10^{-4} at $73^{\circ} \mathrm{C}$. If an initial concentration of $0.330 \mathrm{~mol} / \mathrm{L} \mathrm{COBr}_{2}$ is allowed to reach equilibrium, what are the equilibrium concentrations of $\mathrm{COBr}_{2}, \mathrm{CO}$, and Br_{2} ?$$
\mathrm{COBr}_{2} \leftrightarrow \mathrm{CO}+\mathrm{Br}_{2} \quad \mathrm{~K}_{\mathrm{eq}}=\frac{[\mathrm{CO}]\left[\mathrm{Br}_{2}\right]}{\left[\mathrm{COBr}_{2}\right]}=1.90 \times 10^{-4}
$$

I 0.300
C -x
$+x$
$+x$
$+\mathrm{x}$
E $0.300-\mathrm{x}$

$$
+\mathrm{x}
$$

$$
+x
$$

$\therefore 0.300-\mathrm{x} \cong 0.300$

$$
\mathrm{K}_{\mathrm{eq}}=\frac{(+\mathrm{x})(+\mathrm{x})}{0.300}=1.90 \times 10^{-4}
$$

$$
\begin{aligned}
& x^{2}=5.70 \times 10^{-5} \\
& x=7.55 \times 10^{-3}
\end{aligned}
$$

-. $\because\left[\mathrm{COBr}_{2}\right]_{\mathrm{eq}}=0.300-0.00755=0.292 \mathrm{M},\left[\mathrm{CO}_{\mathrm{eq}}=\left[\mathrm{Cl}_{2}\right]_{\mathrm{eq}}=0.00755 \mathrm{M}\right.$

Ex. $5 \mathrm{PCI}_{5}$ decomposes into PCl_{3} and Cl_{2} gas. What is board the initial concentration of PCl_{5} if at equilibrium the concentration of chlorine gas is $0.500 \mathrm{~mol} / \mathrm{L}$? Given: Kc $=10.00$ (Hint: Use an ICE table)

$$
\begin{aligned}
& \mathrm{PCl}_{5} \leftrightarrow \mathrm{PCl}_{3} \quad+\mathrm{Cl}_{2} \quad \mathrm{~K}_{\mathrm{eq}}=\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}=10.00 \\
& \text { and }\left[\mathrm{Cl}_{2}\right]_{\text {eq }}=0.500 \mathrm{M}=x \\
& \mathrm{~K}_{\mathrm{eq}}=\frac{(0.500)(0.500)}{\mathrm{y}-0.500}=10.00 \\
& 0.25=10.00 y-5.00 \\
& 10.00 \mathrm{y}=5.25 \\
& y=0.525 \\
& {\left[\mathrm{PCl}_{5}\right]_{\mathrm{i}}=0.525 \mathrm{M} \text { and }\left[\mathrm{PCl}_{5}\right]_{\mathrm{eq}}=0.525-0.500=0.025 \mathrm{M}}
\end{aligned}
$$

FOLLOW-UP PROBLEM 17.8 The decomposition of HI at low temperature was studied by injecting 2.50 mol of HI into a $10.32-\mathrm{L}$ vessel at $25^{\circ} \mathrm{C}$. What is [$\left.\mathrm{H}_{2}\right]$ at equilibrium for the reaction $2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) ; K_{\mathrm{c}}=1.26 \times 10^{-3}$?

Note the moles into a 10.32 L vessel stuff ... calculate molarity. Starting concentration of $\mathrm{HI}: 2.5 \mathrm{~mol} / 10.32 \mathrm{~L}=0.242 \mathrm{M}$

$$
\begin{array}{cc}
2 \mathrm{HI} & \mathrm{H}_{2}+\mathrm{I}_{2} \\
0.242 \mathrm{M} & 0
\end{array} 0 \quad K c=\frac{\left[\mathrm{H}_{2}\right]\left[I_{2}\right]}{[H I]^{2}}
$$

Change: - $2 x+x+x$
Equil: $0.242-2 x \quad x \quad x$

$$
K c=\frac{[x][x]}{[0.242-2 x]^{2}}=\frac{x^{2}}{[0.242-2 x]^{2}}=1.26 \times 10^{-3}
$$

What we are asked for here is the equilibrium concentration of H_{2} ... otherwise known as x . So, we need to solve this beast for x .

And yes, it's a quadratic equation. Doing a bit of rearranging:

$$
\begin{aligned}
& \frac{x^{2}}{[0.242-2 x]^{2}}=1.26 \times 10^{-3} \\
& \begin{aligned}
x^{2} & =1.26 \times 10^{-3}[0.242-2 x]^{2} \\
& =1.26 \times 10^{-3}\left[0.0586-0.968 x+4 x^{2}\right] \\
& =7.38 \times 10^{-5}-1.22 \times 10^{-3} x+5.04 \times 10^{-3} x^{2}
\end{aligned}
\end{aligned}
$$

$0.995 x^{2}+1.22 \times 10^{-3} x-7.38 \times 10^{-5}=0$
$x=0.00802$ or -0.00925

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \begin{aligned}
& \text { Since we are using this to mode } \\
& \text { real, physical system, we reject } \\
& \text { the negative root. }
\end{aligned}
$$

FOLLOW-UP PROBLEM 17.9 In a study of halogen bond strengths, 0.50 mol of I_{2} was heated in a $2.5-\mathrm{L}$ vessel, and the following reaction occurred: $\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{I}(\mathrm{g})$.
(a) Calculate [I_{2}] and [I$]$ at equilibrium at $600 \mathrm{~K} ; K_{\mathrm{c}}=2.94 \times 10^{-10}$.
(b) Calculate $\left[\mathrm{I}_{2}\right]$ and [I] at equilibrium at $2000 \mathrm{~K} ; K_{\mathrm{c}}=0.209$.

Initial Concentration of $\mathrm{I}_{2}: 0.50 \mathrm{~mol} / 2.5 \mathrm{~L}=0.20 \mathrm{M}$

	$\mathrm{I}_{2}=$	2 I
Initial	0.20	0
change	$-x$	$+2 x$
equil:	$0.20-x$	$2 x$

Initial
concentration
divided by
Equilibrium
constant is greater than 500 so
approximation will work here.

With an equilibrium constant that small, whatever x is, it's near zero, and 0.20 minus zero is 0.20 (like a million dollars minus a nickel is still a million dollars).
$0.20-\mathrm{x}$ is the same as 0.20

$$
\frac{[2 x]^{2}}{00}=2.94 \times 10^{-10} \quad \mathrm{x}=3.83 \times 10^{-6} \mathrm{M}
$$

FOLLOW-UP PROBLEM 17.9 In a study of halogen bond strengths, 0.50 mol of I_{2} was heated in a $2.5-\mathrm{L}$ vessel, and the following reaction occurred: $\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{I}(\mathrm{g})$.
(a) Calculate $\left[\mathrm{I}_{2}\right]$ and [I] at equilibrium at $600 \mathrm{~K} ; K_{\mathrm{c}}=2.94 \times 10^{-10}$.
(b) Calculate $\left[\mathrm{I}_{2}\right]$ and $[\mathrm{I}]$ at equilibrium at $2000 \mathrm{~K} ; K_{\mathrm{c}}=0.209$.

Initial Concentration of $\mathrm{I}_{2}: 0.50 \mathrm{~mol} / 2.5 \mathrm{~L}=0.20 \mathrm{M}$

Initial	$\begin{gathered} \mathrm{I}_{2}= \\ 0.20 \end{gathered}$	21 0	$K e q=\frac{[I]^{2}}{\left[I_{2}\right]}=0.209$	Initial concentration divided by equilibrium
change	-X	$+2 x$	$[2 x]^{2}$	constant is NOT
equil:	0.20-x	2 x	$\overline{[0.20-x]}=0.2$	greater than 500 so approximation is not possible.

Looks like this one has to proceed through the quadratic ...

LE CHATELIER'S PRINCIPLE

"When a change is applied to a system in dynamic equilibrium, the system reacts in such a way as to oppose the effect of the change."

(: FACTORS AFFECTING THE POSITION OF EQUILIBRIUM

1. CONCENTRATION

The equilibrium constant is not affected by a change in concentration at constant temperature. To maintain the constant, the composition of the equilibrium mixture changes.

If you increase the concentration of a substance, the value of K_{c} will theoretically be affected. As it must remain constant at a particular temperature, the concentrations of the other species change to keep the constant the same.

FACTORS AFFECTING THE POSITION OF EQULIBRUL CONCENTRATION

example

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{I})+\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

the equilibrium constant $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]=4$ (at 298K)
$\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right]\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$
Increasing
[$\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right]$ - to keep it constant, some $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ reacts with $\mathrm{CH}_{3} \mathrm{COOH}$

- this reduces the value of the bottom line and increases the top
- eventually the value of the constant will be restored

Decreasing [$\mathrm{H}_{2} \mathrm{O}$]

- will make the top line smaller
- some $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ reacts with $\mathrm{CH}_{3} \mathrm{COOH}$ to replace the $\mathrm{H}_{2} \mathrm{O}$
- more $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ is also produced
- this reduces the value of the bottom line and increases the top

FACTORS AFFECTING THE POSITION OF EQUULBRubpard

SUMMARY of CONCENTRATION

REACTANTS \rightleftharpoons PRODUCTS

THE EFFECT OF CHANGING THE CONCENTRATION ON THE POSITION OF EQUILIBRIUM	
INCREASE CONCENTRATION OF A REACTANT	EQUILIBRIUM MOVES TO THE RIGHT
DECREASE CONCENTRATION OF A REACTANT	EQUILIBRIUM MOVES TO THE LEFT
INCREASE CONCENTRATION OF A PRODUCT	EQUILIBRIUM MOVES TO THE LEFT
DECREASE CONCENTRATION OF A PRODUCT	EQUILIBRIUM MOVES TO THE RIGHT

Predict the effect of increasing the concentration of O_{2} on the equilibrium position

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

EQUILIBRIUM MOVES TO RHS
Predict the effect of decreasing the
soncentration of SO_{3} on the equilibrium position
EQUILIBRIUM MOVES TO RHS

FACTORS AFFECTING THE POSITION OF EQUULBRUbpard
 FACTORS AFFECTING THE POSITION OF EQUILIBRIUW Wor

2. PRESSURE

When studying the effect of a change in pressure, we consider the number of gaseous molecules only.

The more particles you have in a given volume, the greater the pressure they exert.
If you apply a greater pressure they will become more crowded (i.e. they are under a greater stress). However, if the system can change it will move to the side with fewer gaseous molecules - it is less crowded.

No change occurs when equal numbers of gaseous molecules appear on both sides.

THE EFFECT OF PRESSURE ON THE POSITION OF EQUILIBRIUM	
INCREASE PRESSURE	MOVES TO THE SIDE WITH FEWER GASEOUS MOLECULES
DECREASE PRESSURE	MOVES TO THE SIDE WITH MORE GASEOUS MOLECULES

Predict the effect of an increase of pressure on the equilibrium position of..
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

MOVES TO RHS :- fewer gaseous molecules
NO CHANGE:- equal numbers on both sides

Pressure - changes in pressure will only affect gaseous atoms or molecules

- Increasing the pressure will favour the direction that has fewer molecules

$$
\mathrm{N}_{\mathbf{2 (g)}}+3 \mathrm{H}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}
$$

- For every two molecules of ammonia made, four molecules of reactant are used up - this equilibrium shifts to the right with an increase in pressure (or a decrease in volume)
- Also increasing volume is the same as decreasing pressure

3. TEMPERATURE

- temperature is the only thing that can change the value of the equilibrium constant.
- altering the temperature affects the rate of both backward and forward reactions
- it alters the rates to different extents
- the equilibrium thus moves producing a new equilibrium constant.
- the direction of movement depends on the sign of the enthalpy change (whether it is exothermic or endothermic)

FACTORS AFFECTING THE POSITION OF EQULIBRIUPard

 TEMPERATURE- temperature is the only thing that can change the value of the equilibrium constant.
- altering the temperature affects the rate of both backward and forward reactions
- it alters the rates to different extents
- the equilibrium thus moves producing a new equilibrium constant.
- the direction of movement depends on the sign of the enthalpy change.

REACTION TYPE	$\Delta \mathrm{H}$	INCREASE TEMP	DECREASE TEMP
EXOTHERMIC	-	TO THE LEFT	TO THE RIGHT
ENDOTHERMIC	+	TO THE RIGHT	TO THE LEFT

FACTORS AFFECTING THE POSITION OF EQUILIBRIUM board

TEMPERATURE

REACTION TYPE	ΔH	INCREASE TEMP	DECREASE TEMP
EXOTHERMIC	-	TO THE LEFT	TO THE RIGHT
ENDOTHERMIC	+	TO THE RIGHT	TO THE LEFT

Predict the effect of a temperature increase on the equilibrium position of...

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}=+40 \mathrm{~kJ} / \mathrm{mol}
$$

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \rightleftharpoons \quad 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=- \text { ive }
$$

ANSWERS TO TEMPERATURE EXAMPLES

Predict the effect of a temperature increase on the equilibrium position of...

$$
\begin{array}{ll}
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \begin{array}{l}
\Delta \mathrm{H}=+40 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
- \text { moves to the RHS }
\end{array} \\
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) & \begin{array}{l}
\Delta \mathrm{H}=- \text { ive } \\
\text { - moves to the LHS }
\end{array}
\end{array}
$$

- Temperature - increasing the temperature causes the equilibrium position to shift in the direction that absorbs heat
- If heat is one of the products (just like a chemical), it is part of the equilibrium
- so cooling an exothermic reaction will produce more product, and heating it would shift the reaction to the reactant side of the equilibrium:

$$
\mathrm{C}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrow \mathrm{CO}_{2(\mathrm{~g})}+393.5 \mathrm{~kJ}
$$

FACTORS AFFECTING THE POSITION OF EQUILIBRIURPard

4. CATALYSTS

Catalysts work by providing an alternative reaction pathway involving a lower activation energy.

REACTION CO-ORDINATE

CATALYSTS

An increase in temperature is used to speed up chemical reactions but it can have an undesired effect when the reaction is reversible and exothermic.

In this case you get to the equilibrium position quicker but with a reduced yield because the increased temperature moves the equilibrium to the left.

In many industrial processes a compromise temperature is used (see Haber and Contact Processes). To reduce the problem one must look for a way of increasing the rate of a reaction without decreasing the yield i.e. with a catalyst.

FACTORS AFFECTING THE POSITION OF EQULLBRIUPard

CATALYSTS

An increase in temperature is used to speed up chemical reactions but it can have an undesired effect when the reaction is reversible and exothermic.

In this case you get to the equilibrium position quicker but with a reduced yield because the increased temperature moves the equilibrium to the left.

In many industrial processes a compromise temperature is used (see Haber and Contact Processes). To reduce the problem one must look for a way of increasing the rate of a reaction without decreasing the yield i.e. with a catalyst.

Adding a catalyst DOES NOT AFFECT THE POSITION OF EQUILIBRIUM. However, it does increase the rate of attainment of equilibrium. This is especially important in reversible, exothermic industrial reactions such as the Haber or Contact Processes where economic factors are paramount.

Opposing change

Whenever a change is made to a reversible reaction in dynamic equilibrium, the equilibrium will shift to try and oppose the change.

Condition
 Effect

Temperature
Increasing the temperature shifts the equilibrium in the direction that takes in heat.

Concentration
Increasing the concentration of a substance shifts the equilibrium in the direction that produces less of that substance.

Pressure

Increasing the pressure shifts the equilibrium in the direction that produces less gas.

(1)xothermic and endothermic reaction board

All reactions are exothermic (give out heat) in one direction and endothermic (take in heat) in the other.

If the temperature is increased:

- equilibrium shifts to decrease the temperature
- equilibrium shifts in the endothermic direction

If the temperature is decreased:

- equilibrium shifts to increase the temperature
- equilibrium shifts in the exothermic direction

Opposing changes in temperature

Nitrogen dioxide is in constant equilibrium with dinitrogen tetroxide. The forward reaction is exothermic and the backwards reaction is endothermic.

nitrogen dioxide $2 \mathrm{NO}_{2}(\mathrm{~g})$
 +
 dinitrogen tetroxide $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$

What will happen if the temperature is increased?

- The equilibrium will shift to decrease the temperature, i.e. to the left (endothermic).
- More $\mathbf{N O}_{2}$ will be produced.

If the temperature is decreased, more $\mathbf{N}_{2} \mathbf{O}_{4}$ will be produced.

(1) Concentration and equilibrium

Changing the concentration of a substance affects the equilibrium of reversible reactions involving solutions.

$$
\begin{aligned}
& \text { increasing the } \begin{array}{l}
\text { equilibrium shifts to } \\
\text { concentration of }=\begin{array}{l}
\text { decrease the amount of } \\
\text { substance } \mathbf{A}
\end{array} \\
\text { substance A }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { decreasing the } \quad \begin{array}{l}
\text { equilibrium shifts to } \\
\text { concentration of }= \\
\text { increase the amount of } \\
\text { substance A }
\end{array} \quad \begin{array}{l}
\text { substance A }
\end{array}
\end{aligned}
$$

Opposing changes in concentration (1) bourd

Bismuth chloride reacts with water to produce a white precipitate of bismuth oxychloride and hydrochloric acid.
bismuth chloride
$\mathrm{BiCl}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{BiOCl}(\mathrm{s}) \quad+\quad 2 \mathrm{HCl}(\mathrm{aq})$

What will happen if more $\mathrm{H}_{\mathbf{2}} \mathrm{O}$ is added?

- The equilibrium will shift to decrease the amount of water, i.e. to the right.
- More $\mathbf{B i O C l}$ and HCI will be produced.

If $\mathrm{H}_{2} \mathrm{O}$ is removed, more BiCl_{3} and $\mathrm{H}_{\mathbf{2}} \mathbf{O}$ will be produced.

Opposing changes in concentration (2)

Chlorine gas reacts with iodine chloride to produce iodine trichloride.

What effect will adding more Cl_{2} have on the colour of the mixture?

What effect will removing Cl_{2} have on the colour of the mixture?

It will become more yellow.

It will become more brown.

Changing the pressure has an effect on the equilibrium of reversible reactions involving gases.

If the pressure is increased:

- equilibrium shifts to decrease the pressure
- equilibrium shifts in the direction of fewest molecules

If the pressure is decreased:

- equilibrium shifts to increase the pressure
- equilibrium shifts in the direction of most molecules

Opposing changes in pressure

Nitrogen dioxide is in constant equilibrium with dinitrogen tetroxide. Two molecules of nitrogen dioxide react to form one molecule of dinitrogen tetroxide.

nitrogen dioxide \rightleftharpoons dinitrogen tetroxide $\mathbf{2 N O} \mathbf{2}^{(g)}$
 ㄹ $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$

What will happen if the pressure is increased?

- The equilibrium will shift to reduce the number of molecules, i.e. to the right (only 1 molecule).
- More $\mathbf{N}_{2} \mathbf{O}_{4}$ will be produced.

If the pressure is decreased, more $\mathbf{N O}_{2}$ will be produced.

Dynamic equilibrium and change

1. A \qquad equilibrium will try to any change placed on it.
2. If a reaction that is exothermic from left to right is heated, \qquad product will be made.
3. If the pressure is \qquad , the equilibrium will shift so there are \qquad molecules of gas.

minimizing

dynamic
oppose
less \square
product more hide

FOLLOW-UP PROBLEM 17.11 In a study of the chemistry of glass etching, an inorganic chemist examines the reaction between sand $\left(\mathrm{SiO}_{2}\right)$ and hydrogen fluoride at a temperature above the boiling point of water:

$$
\mathrm{SiO}_{2}(s)+4 \mathrm{HF}(g) \rightleftharpoons \mathrm{SiF}_{4}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Predict the effect on $\left[\mathrm{SiF}_{4}\right]$ when (a) $\mathrm{H}_{2} \mathrm{O}(g)$ is removed; (b) some liquid water is added; (c) HF is removed; (d) some sand is removed.

What is ammonia?

Ammonia is an important compound in the manufacture of fertilizer and other chemicals such as cleaning fluids and floor waxes.

It is made industrially by reacting nitrogen with hydrogen in the Haber process. It is a reversible reaction, so it never goes to completion.

Why is this a problem for companies making ammonia?

$$
\begin{array}{ccccc}
\text { nitrogen } & + & \text { hydrogen } & \rightleftharpoons & \text { ammonia } \\
\mathrm{N}_{2}(\mathrm{~g}) & +3 \mathrm{H}_{2}(\mathrm{~g}) & \rightleftharpoons & 2 \mathrm{NH}_{3}(\mathrm{~g})
\end{array}
$$

The Haber process

How is ammonia produced in the Haber process?

The Haber process is the industrial reaction used to make ammonia $\left(\mathrm{NH}_{3}\right)$ from hydrogen $\left(\mathrm{H}_{2}\right)$ and nitrogen $\left(\mathrm{N}_{2}\right)$.

Click "play" to find out what happens.

What is yield?

The amount of product made in a reaction is called the yield and is usually expressed as a percentage.

The yield of ammonia produced by the Haber process depends on the temperature and pressure of the reaction.

What is the Haber compromise?

The highest yield of ammonia is theoretically produced by using a low temperature and a high pressure.

In practice, though, these conditions are not used. Why?

Lowering the temperature slows down the rate of reaction. This means it takes longer for ammonia to be produced.

Increasing the pressure means stronger, more expensive equipment is needed. This increases the cost of producing the ammonia.

A compromise is reached to make an acceptable yield in a reasonable timeframe while keeping costs down.

Temperature, pressure and yield board

How do temperature and pressure affect the Haber process?

\bigcirc nitrogen
\bigcirc hydrogen

ammonia
temp. pressure

What conditions are used in the Haber process?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad: \Delta \mathrm{H}=-92 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Conditions

Pressure	20000 kPa
Temperature	$380-450^{\circ} \mathrm{C}$
Catalyst	iron

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad: \Delta \mathrm{H}=-92 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Conditions
Pressure
Temperature
Catalyst

20000 kPa (200 atmospheres)
$380-450^{\circ} \mathrm{C}$
iron

Equilibrium theory favours
low temperature
high pressure
exothermic reaction - higher yield at lower temperature decrease in number of gaseous molecules
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad: \Delta \mathrm{H}=-92 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Conditions
Pressure
Temperature
Catalyst

20000 kPa (200 atmospheres)
$380-450^{\circ} \mathrm{C}$
iron

Equilibrium theory favours
low temperature exothermic reaction - higher yield at lower temperature
high pressure decrease in number of gaseous molecules
Kinetic theory favours
high temperature
high pressure
catalyst lower activation energy
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad: \Delta \mathrm{H}=-92 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Conditions

Pressure
Temperature
Catalyst

20000 kPa (200 atmospheres)
$380-450^{\circ} \mathrm{C}$
iron

Equilibrium theory favours

high pressure decrease in number of gaseous molecules
Kinetic theory favours
high temperature greater average energy + more frequent collisions
high pressure catalyst lower activation energy

Compromise conditions
Which is better? A low yield in a shorter time or
a high yield over a longer period.
The conditions used are a compromise with the catalyst

IMPORTANT USES OF AMMONIA AND ITS COMPOUNDS

MAKING

FERTILISERS 80% of the ammonia produced goes to make fertilisers such as ammonium nitrate (NITRAM) and ammonium sulphate

$$
\begin{array}{ll}
\mathrm{NH}_{3}+\mathrm{HNO}_{3} & \longrightarrow \mathrm{NH}_{4} \mathrm{NO}_{3} \\
2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} & \longrightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}
\end{array}
$$

MAKING

NITRIC ACID
ammonia can be oxidised to nitric acid
nitric acid is used to manufacture... fertilisers (ammonium nitrate)

(1) The Haber compromise

To produce a high yield of ammonia, but with a fast rate of reaction and without the need for overly expensive equipment, the Haber process is carried out at $450^{\circ} \mathrm{C}$ and 200 atmospheres.

The most important factor in deciding what conditions to use is therefore not yield, but total cost.

What costs are involved in the industrial production of ammonia?

- raw materials
- energy
- equipment
- wages

Maximizing productivity

What else can be done to maximise productivity in the manufacture of ammonia?

- An iron catalyst is used to increase the rate of reaction. It speeds up both the forward and backward reaction, so the position of equilibrium is not affected.
- The ammonia is cooled, liquefied and then removed as it is produced. This causes the equilibrium to shift to the right to produce more ammonia.
- Unreacted nitrogen and hydrogen are recycled and given another chance to react.

Temperature, pressure and yield

What are the missing words about the Haber process?

1a. The forward reaction in the Haber \square produces heat.
1b. It is therefore \square ? ? $\mid \nabla$

2a. Lowering the temperature will cause the equilibrium to shift to the \quad ? $\quad \nabla$ to try and oppose the change.
2b. This will ? \quad ? the yield of ammonia.
3a. There are \quad ? ∇ molecules to the left of the

solve

Stages of the Haber process What is the order of stages in the Haber process?

(1) Steam is reacted with methane to make hydrogen.
(2) The gases are compressed to 200 atmospheres.
(3) Ammonia gas is produced, then cooled to a liquid.
(4) Hydrogen is mixed with nitrogen, obtained from air.
(5) Liquid ammonia is pumped off to be sold.
(6) The gases are heated to $450^{\circ} \mathrm{C}$.

Unreacted nitrogen and hydrogen are recycled.
(8)

The gases are passed over an iron catalyst.

Glossary

- closed system - A system in which reactants and products cannot be added or removed once the reaction has begun.
- dynamic - An equilibrium in which the forward and backward reactions take place at the same rate, so no overall change takes place.
- Haber process - The industrial-scale process for making ammonia from nitrogen and hydrogen.
- irreversible - A reaction that is impossible or very difficult to reverse.
- reversible - A reaction in which the product(s) can be turned back into the reactants.
- yield - The amount of product obtained from a reaction, usually expressed as a percentage.

Anagrams

How quickly can you unscramble anagrams of words about

$$
\begin{array}{l|lllll}
\text { r } & \mathbf{v} & \mathbf{r} & \mathbf{i} & \mathbf{b} & \mathbf{e} \\
\mathbf{r} & \mathbf{e} & \mathbf{c} & \mathbf{t} & \mathbf{i} & \mathbf{n} \\
\hline \text { start }
\end{array}
$$

(1)
 Multiple-choice quiz

