Percent Composition. Empirical and

Molecular Formulas

Law of Definite Proportions

This law states that the elements in a chemical compound are always present in the same proportions by mass.

For example, the mass\% of oxygen in water is always 88.8% and the mass of hydrogen is 11.2%.

Calculating Percentage Composition

 - relative mass of each element in a compound i) Using Mass DataEx. A compound with a mass of 50 g is found to contain 32.3 g of zinc and 17.7 g of sulfur. What is the percentage composition of the compound?

ii) Calculating \% Composition using formula

Steps to Solve for Percent Composition
(with example)

$$
\mathrm{PCl}_{5} \quad \text { (Phosphorus Pentachloride) }
$$

1) Find the molar mass of all elements in the compound:

$$
\begin{aligned}
& \mathrm{P}=30.974 \mathrm{~g} \\
& \mathrm{Cl}=5(35.453 \mathrm{~g})=177.265 \mathrm{~g}
\end{aligned}
$$

2) Find the molecular mass:

$$
\mathrm{PCl}_{5}=30.974 \mathrm{~g}+177.265 \mathrm{~g}=208.239 \mathrm{~g}
$$

3) Divide each molar mass by the molecular mass and multiply by 100 :

$$
\begin{aligned}
& \mathrm{P}=\frac{30.974 \mathrm{~g}}{208.239 \mathrm{~g}} \times 100=\underline{14.87 \%} \\
& \mathrm{Cl}=\frac{177.265 \mathrm{~g}}{208.239 \mathrm{~g}} \times 100=\underline{85.13 \%}
\end{aligned}
$$

Therefore, Phosphorus Pentachloride is $14.87 \% \mathrm{P}$ and $85.13 \% \mathrm{Cl}$ by mass.

Calculating Percentage Composition

 Ex. b) Determine the percentage composition of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$.Homework:
Practice: p. 286 \#1. 2 and p. 287 \#3
Questions: p. 288 \#1, 2, 4,5.7

Formulas

Empirical formula: the lowest whole number ratio of atoms in a compound. Molecular formula: the true number of atoms of each element in the formula of a compound.

I molecular formula $=$ (empirical formula) ${ }_{n}$
\square molecular formula $=\mathrm{C}_{6} \mathrm{H}_{6}=(\mathrm{CH})_{6}$
\square empirical formula $=\mathrm{CH}$

Formulas (continued)

Formulas for ionic compounds are ALWAYS empirical (lowest whole number ratio).

Examples:

$$
\begin{array}{ll}
\mathrm{NaCl} & \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \\
\mathrm{MgCl}_{2} & \mathrm{~K}_{2} \mathrm{CO}_{3}
\end{array}
$$

Formulas (continued)

Formulas for molecular compounds MIGHT be empirical (lowest whole number ratio).

Molecular: $\mathrm{H}_{2} \mathrm{O}$

Empirical: $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ \downarrow
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
$\mathrm{CH}_{2} \mathrm{O}$
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$

Empirical Formula Determination

1. If given percentages of elements. assume you have 100 grams of the compound. Determine moles of each element in $\mathbf{1 0 0}$ grams of the compound.
2. Divide each value of moles by the smallest of the mole values.
3. Multiply each number by an integer to obtain all whole numbers.

Given:

Mass \% elements

Assume 100 g sample

Find:

Empirical

 formula
(Divide by

 smallest andmultiply to $\begin{aligned} & \text { Calculate } \\ & \text { make }\end{aligned}$
mole ratio whole)

Moles of each element

Sample Problem \#1 Using a Table: What is the empirical formula for a compound with 48% C. 8\% H, 28\% N and 16\% O?

Ellement	$\begin{array}{\|c\|} \hline \text { Mass(g) } \end{array}$	Atamic mass (Molar Mass)	Atamic ratio (Moles)	$\begin{array}{\|l} \hline \text { Simplest } \\ \text { ratiol } \end{array}$ Divide by smallest mole	Simplest whole no.ratio
C	48, 0	12	$\frac{48.0}{12}=4.0$	$\frac{4.0}{1.0}=4$	4
H	B, 1	1	$\frac{8.0}{1}=8,0$	$\frac{8.0}{1.0}=8$	8
N	28,0	14	$\frac{28.0}{14}=2.0$	$\frac{2.0}{1.0}=2$	2
0	16.0	16	$\frac{16,0}{16}=1,0$	$\frac{1.0}{1.0}=1$	1

Example \#2: What is the empirical formula if there is 8.4 g of Carbon, 2.1 g of Hydrogen and 5.6 g of Oxygen?

ATOM	MASS	MOLAR MASS	MOLES	(mole) SMALLEST MOLE	RATIO
Γ	0.4	170	0.7	$\frac{0.7}{0.35} \quad 2$	2
$1+$	≥ 11	10	2.1	$\frac{2.1}{0.35} \quad 6$	\square
	$5 \cdot 0$	10.0	0.35	$\frac{0.35}{0.35}$	1

Empirical Formula Determination

Ex. 3 Adipic acid contains 49.32% C. 43.84% O. and $6.85 \% \mathrm{H}$ by mass. What is the empirical formula of adipic acid?

Solution: Treat \% as mass (assuming we have 100 g), and convert grams to moles.

$$
\stackrel{49.32 \mathrm{~g} \text { carbon }}{ } \left\lvert\, \frac{1 \text { mol carbon }}{12.01 \mathrm{~g} \text { carbon }}=4.107\right. \text { mol carbon }
$$

6.85 g hydrogen $\left\lvert\, \frac{1 \text { mol hydrogen }}{1.01 \mathrm{~g} \text { hydrogen }}=6.78 \mathrm{~mol}\right.$ hydrogen
43.84 g oxygen $\left\lvert\, \frac{1 \text { mol } \text { oxygen }}{16.00 \mathrm{~g} \text { oxygen }}=2.74\right.$ mol oxygen

Empirical Formula Determination

2. Divide each value of moles by the smallest of the values.
Carbon: $\frac{4.107 \mathrm{~mol} \text { carbon }}{2.74 \mathrm{~mol}}=1.50$
Hydrogen: $\frac{6.78 \mathrm{~mol} \mathrm{hydrogen}}{2.74 \mathrm{~mol}}=2.47$
Oxygen:

$$
\frac{2.74 \text { mol } \text { oxygen }}{2.74 \mathrm{~mol}}=1.50
$$

Empirical Formula Determination

3. Multiply each number by an integer to obtain all whole numbers.

Carbon: 1.50 Hydrogen: 2.50 Oxygen: 1.00

$$
\begin{array}{r}
2 \\
\times 3
\end{array}
$$

$$
\begin{array}{r}
\times 2 \\
\hline 5
\end{array}
$$

Empirical formula: $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$

Finding the Molecular Formula

The empirical formula for adipic acid is $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$. The molar mass of adipic acid is $146 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula of adipic acid?

1. Find the molar mass of the empirical formula - $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$

$$
3(12.01 \mathrm{~g})+5(1.01)+2(16.00)=73.08 \mathrm{~g}
$$

Finding the Molecular Formula

The empirical formula for adipic acid is $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$. The molar mass of adipic acid is $146 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula of adipic acid?

$$
M=3(12.01 \mathrm{~g})+5(1.01)+2(16.00)=73.08 \mathrm{~g}
$$

2. Divide the molar mass of the molecular formula (given) by the mass calculated for the empirical formula.

$$
\frac{146}{73}=2
$$

Finding the Molecular Formula

The empirical formula for adipic acid is $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$. The molar mass of adipic acid is $146 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula of adipic acid?
3. Multiply the empirical formula by this number to get the molecular formula.

$$
\frac{146}{73}=2 \quad\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right) \times 2=\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}
$$

Finding the Formula of a Hydrate

- A hydrate is any salt that has water chemically bonded to the ions in the crystal structure is a hydrate or hydrated crystal.
- Copper(II) sulfate pentahydrate is a hydrate.
- Hydrated copper(II) sulfate is deep blue in color.

- Other examples include:
- Calcium chloride dihydrate $=\mathrm{CaCl}_{2} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}$
- Chromium (III) nitrate hexahydrate $=\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

What is the compound called after the water has been removed?

- Anhydride (noun)
- The light blue powder is the anhydride.
- Anhydrous (adjective)
- Anhydrous copper(II) sulfate is left in the test tube after heating (water removed)

Percent Composition and Formula of Hydrate

- A 5.0 gram sample of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{nH}_{2} \mathrm{O}$ is heated, and 3.9 g of the anhydrous salt remains. What is the value of n ?

1. Amount of water lost
5.0 g hydrate

- 3.9 g anhydrous salt
1.1 g water

3. Amount (moles) of water
$n=0.22 \times 18.02=4.0$
4. Percent of water
1.1 g water $\times 100=22 \%$
5.0 g hydrate
