Grade 10 Chemistry Unit Test Review:

1. Complete the following chart:

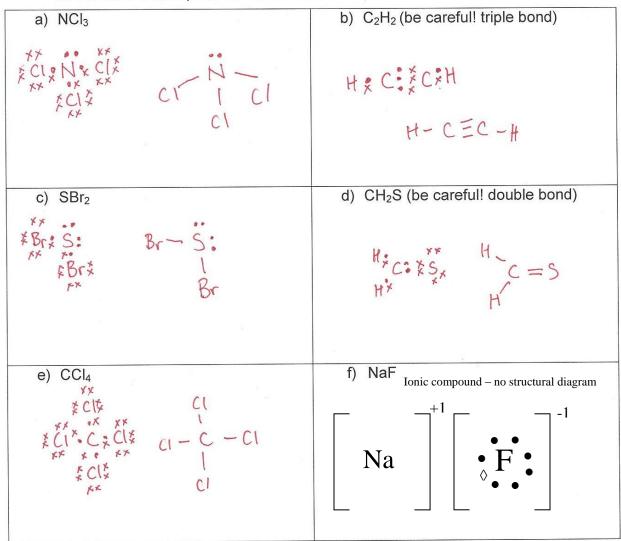
	Composed of what elements	Physical and Chemical Properties(conductivity, melting point, solubility)	Example
lonic Compounds	Metal & non-metal (or positive ion & negative ion)	High electrical conductivity when dissolved in water High melting points Very soluble in water	NaCl (salt)
Molecular Compounds	Non-metals only	do not conduct electricity Low melting points Tend not to be soluble in water (with some exceptions)	Glucose Lauric acid

2. What key differences are there between ionic and covalent bonds?

lonic – transfer of electrons from one atom to another to form charged particles (ions) so that valence shell is full (metal gives away electrons to non-metal)

Covalent – sharing of electrons between 2 atoms that are non-metals; satisfies octet rule (each atom has 8 valence electrons around it)

3. What are 5 clues that a chemical change has occurred?


Heat/light produced, precipitate from 2 liquids, gas/bubbles, odour change, colour change, texture change, difficult to reverse

4. Complete the following chart:

Element	Symbol	# Electrons	# Protons	# Neutrons	Charge of lons formed
Sodium	Na	11	11	12	+1
Phosphorus	Р	15	15	16	-3
Gallium	Ga	31	31	39	+3

5.	Write the correct formulas for the following. Identify the type of compound (ionic or molecular).	6.	Write the names for the following compounds. Identify the type of compound (ionic or molecular).	

a) strontium carbonate	a) Li ₂ O
SrCO ₃	Lithium Oxide
type: ionic	type: ionic
b) magnesium fluoride	b) SiO ₂
MgF ₂	Silicon dioxide
type: ionic	type: molecular
c) arsenic trichloride	c) FeS
AsCl ₃	Iron (II) sulfide
type: molecular	type: ionic
d) gold (III) sulfide	d) SrF_2
Au_2S_3	Strontium fluoride
type: ionic	type: ionic
e) calcium oxide	e) As_2S_3
CaO	Diarsenic trisulfide
type ionic	type: molecular
f) diphosphorus pentoxide	f) $Ba(NO_3)_2$
P_2O_5	Barium nitrate
type: molecular	
	type: ionic with molecular polyatomic ion
g) sodium hydroxide NaOH	g) Na ₂ S Sodium sulfide
type: ionic with molecular polyatomic ion	type: ionic
h) hydrogen chloride	h) $Al_2(SO_4)_3$
HCI	Aluminum sulfate
type: molecular, acid	type: ionic with molecular polyatomic ion

7. Draw the Lewis **and** structural diagrams for the following compounds. Remember to include the lone pairs for central atoms:

8. When balancing equations, which two elements should you **usually** balance last?

Oxygen and hydrogen (or any elements that are on their own)

9. Write the following word equations as skeleton chemical equations, and then as balanced chemical equations. Indicate the TYPE OF REACTION being presented. Don't forget about HOFBrINCI!

Skeleton equation:

 $\text{KCIO}_3 \rightarrow \text{KCI} + \text{O}_2$

Balanced chemical equation:

 $2\text{KCIO}_3 \rightarrow 2\text{KCI} + 3\text{O}_2$

R	eactants		Products
К	2	K	2
CI	2	CI	2
0	6	0	6

Reaction Type: decomposition

b) iron (III) oxide + carbon → iron + carbon dioxide

Skeleton equation:

 $Fe_2O_3 + C \rightarrow Fe + CO_2$

Balanced chemical equation:

 $2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$

Re	actants		Products
Fe	4	Fe	4
0	6	0	6
С	3	С	3

Reaction Type: single displacement

Skeleton equation:

 $AI + CuSO_4 \rightarrow Cu + AI_2(SO_4)_3$

Balanced chemical equation:

 $2AI + 3CuSO_4 \rightarrow 3Cu + Al_2(SO_4)_3$

Read	ctants	Proc	lucts
AI	2	AI	2
Cu	3	Cu	3
S	3	S	3
0	12	0	12

Reaction Type: double displacement

d) octane (C_8H_{18}) + oxygen \longrightarrow carbon dioxide + water Skeleton equation:

 $C_8H_{18} \textbf{+} O_2 \rightarrow CO_2 \textbf{+} H_2O$

Balanced chemical equation:

 $2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O$

R	Reactants		Products	
С	16	С	16	
Н	36	Н	36	
0	50	0	50	

Reaction Type: combustion

10. State the Law of Conservation of Mass, and explain how it is related to balanced chemical equations.

The mass of reactants is the same as the mass of the products of a chemical reaction, so the number of atoms of each element must be the same before and after a reaction

11. Complete the following chart on acids and basses:

	Acids	Bases
Physical	Good electrical conductors	Good electrical conductors
Properties	Sour taste	Bitter taste
	Water soluble	Slippery feel
		Water soluble
Chemical Properties	Corrosive, reactive Release H ⁺ ions when dissolved	Corrosive, reactive and can break down proteins
	in water	Releases OH ⁻ ions when dissolved in water

- a) What does the pH scale measure? Acidity the concentration of hydrogen ions
- b) Consider a solution with a pH of 3 and a solution with a pH of 5. Which is more acidic? How much more acidic is it (i.e. How many times is it more acidic)?

pH of 3 is more acidic by 100x (10 x 10)

c) Consider a solution with a pH of 10.8 and a solution of 9.8. Which is more basic? How much more basic is it?

pH of 10.8 is more basic by 10x

12. What is the general equation of a neutralization reaction? Write the balanced chemical equation for the neutralization reaction of hydrochloric acid (HCI) and sodium hydroxide.

Acid + Base \rightarrow Water + a salt

 $\text{HCI} + \text{NaOH} \rightarrow \text{NaCI} + \text{H}_2\text{O}$

13. Identify each of the following substances as acidic, basic (alkaline) or neither when dissolved in water, and write the corresponding name or formula for each substance:

Substance	Acidic or Basic
potassium bicarbonate	basic
NH ₄ OH _(aq)	Basic
$H_2SO_{4(aq)}$	Acid
HNO _{3(aq)}	Acid
sodium hydroxide	Base
A solution with a pH of 3	Acid

14. How are baking soda and Alka-Seltzer tablets similar?

They are both bases and act to neutralize acid

- 15. What would you expect as an approximate pH value for:
 - (a) a very concentrated base 13-14
 - (b) a dilute acid solution 5-6
 - (c) distilled water 7

16. Balance and name the type of reaction:

Type

a) $2_CuO \rightarrow 2_Cu + _O_2$	Decomposition
b) $2P + 3H_2 \rightarrow 2PH_3$	Synthesis
c) _2Al + _3CuSO ₄ \rightarrow Al ₂ (SO ₄) ₃ + _3Cu	Single Displacement
d) $\underline{N}_2 + \underline{3}_H_2 \rightarrow \underline{2}_NH_3$	Synthesis
e) _3_NaOH +H_3PO ₄ \rightarrow Na ₃ PO ₄ + _3_H ₂ O	Double Displacement
f) $2(NH_4)_3PO_4 + 3ZnCI_2 \rightarrow 6NH_4CI + Zn_3O_4$	(PO ₄) ₂ Double Displa.

17. Complete the chart:

Indicator	<u>Acid</u>	<u>Base</u>
Litmus	Red	Blue
Phenolphthalein	Colourless	Pink
Bromothymol Blue	Yellow	Blue